Affiliation:
1. Jiangsu Key Laboratory of Process Enhancement
and New Energy Equipment Technology, College of Mechanical and Power Engineering, Nanjing University of Technology, 30 Puzhu Road, Nanjing, Jiangsu 211816, China
Abstract
Shell-and-tube heat exchangers are the most common type of heat exchangers in oil refineries and other large chemical processes. In this manuscript, we demonstrate that the shell-side flow in a cylindrical shell was not as homogeneous as that in a rectangular shell. According to the periodic flow field and the arrangement of tubes in the rectangular shell, the solid-fluid coupling heat transfer model consisting of a single tube section and the outer and inner fluids was developed to represent the whole heat exchanger. Using this model, the relationship among four temperatures, namely the inlet and outlet temperatures of tube-side fluid and the upstream and downstream temperatures of shell-side fluid, was established. By dividing each tube into several tube sections at the sites of baffles, a method for predicting the temperature field of the rectangular shell-and-tube heat exchanger was proposed. Based on the node temperature correlation, all the node temperatures were obtained by iterative computation using the established relationship between the four temperatures and the operating conditions. It was found that the temperature distribution of the fluid in tube was approximately linear along axial direction, but the temperature of tube showed nonlinear regularity. The axial deformation compatibility condition for the tube bundle and shell was considered when resolving the stresses in tubes. For the model established in this paper, the mean temperature of the tube at lower position was found to be larger than that at higher position; hence the thermal expansion of the tube at the lower end is larger. In the case the tube-side fluid was heated, all tubes were pulled because of the larger axial thermal expansion of shell, and the stress in the tube with higher temperature is smaller because of the smaller strain.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献