Affiliation:
1. Heat Transfer and Thermal Power Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
Abstract
A convecting-radiating fin array, which stands vertically outside of a horizontal rectangular duct, has been analyzed for various design constraints. Fully developed turbulent flow is considered inside the duct. This study takes into account the variation of fluid temperature along the duct, which has been ignored in most of the earlier studies. The one-dimensional governing equation for temperature distribution along the fin is solved for all the fins of the fin array and the total heat transfer rate per unit system mass, total entropy generation rate and optimum fin height based on maximum heat transfer rate per unit system mass are evaluated from the derived temperature profiles. These quantities are then correlated as functions of geometric and flow parameters for three types of fin profile. Optimum solutions are generated based on (i) maximum heat dissipation rate per unit system mass and (ii) minimum entropy generation rate. A procedure to combine these two optima in order to obtain a “holistic” optimum is also discussed.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献