An Accurate and Efficient Approach to Undeformed Chip Geometry in Face-Hobbing and Its Application in Cutting Force Prediction

Author:

Habibi Mohsen1,Chen Zezhong Chevy1

Affiliation:

1. Mechanical and Industrial Engineering Department, Concordia University, CAD/CAM Lab. EV 12.165, 1515 Street Catherine Street West, Montreal, QC H3G 1M8, Canada e-mail:

Abstract

Due to complexities of face-hobbing of bevel gears, such as the intricate geometry of the cutting system, multi-axis machine tool kinematic chains, and the variant cutting velocity along the cutting edge, deriving the instantaneous undeformed chip geometry, as one of the most important characteristic of material removal, is a challenging process. In the present research, all these complexities have been taken into consideration to obtain an in-process model and undeformed chip geometry, and predict cutting forces. The instantaneous undeformed chip geometry is obtained using the derived in-process model. As an application of the proposed methods, cutting forces are predicted during face-hobbing by oblique cutting theory using the derived undeformed chip geometry and converting face-hobbing into oblique cutting. The proposed methods are applied on two case studies of face-hobbing of bevel gears and the chip geometry is derived and the cutting forces are predicted.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3