Affiliation:
1. QUEST Integrated, Inc., 21414-68th Avenue South, Kent, WA 98032
Abstract
This paper addresses the wear characteristics of the mixing tube of an abrasive-waterjet nozzle. An effective nozzle material should possess high values of both hardness and toughness. The mixing tube, which is where the abrasives are mixed, accelerated, and focused with the high-pressure waterjet, is the component in the abrasive-water jet nozzle that receives the greatest wear. Accelerated wear tests were conducted on relatively soft (steel) mixing tubes using a typical soft abrasive (garnet sand) and on harder (tungsten carbide) tubes using a harder abrasive material (aluminum oxide). A wide range of candidate tool materials, including several carbides and ceramics, was also tested using actual machining parameters. The tungsten carbide grades exhibited greater longevity than the harder ceramics, such as boron carbide, when garnet abrasives were used. The reverse trend was observed with aluminum oxide abrasives. Wear trends suggest that the wear mechanisms along the mixing tube change from erosion by particle impact at the upstream sections to abrasion at the downstream sections. Linear cutting tests were also conducted on several candidate nozzle materials to gain more information related to wear performance. It was found, for example, that the binder in tungsten carbide, which controls these properties, is a critical factor that also controls the lifetime of tungsten carbide mixing tubes.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献