The Effective Dilatational Response of Fiber-Reinforced Composites With Nonlinear Interface

Author:

Levy A. J.1

Affiliation:

1. Department of Mechanical, Aerospace and Manufacturing Engineering, Syracuse University, Syracuse, NY 13244

Abstract

This paper presents a model of the dilatational response of fiber-reinforced composites for situations where the fibers interact with the matrix through a nonlinear interfacial separation mechanism. The solution to a planar solitary fiber-interface-matrix problem is employed together with the geometrically consistent composite cylinders model to obtain an exact solution for the bulk response of an elastic matrix reinforced with unidirectional elastic fibers. In the solitary fiber problem interface characterization assumes the form of a nonlinear force-separation law which couples the normal component of displacement jump to the normal component of interface traction and which requires a characteristic length for its prescription. Under decreasing values of characteristic length to inclusion radius ratio ductile or brittle decohesion or closure can occur provided the applied load, interface strength and elastic moduli of fiber and matrix are within the required bounds. Interaction effects due to finite fiber volume concentration, along with the phenomenon of brittle decohesion arising in the solitary fiber problem from the bifurcation of equilibrium separation at the fiber matrix interface, are shown to precipitate instability in the composite. An inequality relating the elastic moduli and interface properties is provided which governs the smooth or abrupt transition in composite response from rigid interface behavior to void behavior. The results are shown to apply equally well for composite geometry based on the three-phase model.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Homogenization of Composites with Extended General interfaces: Comprehensive Review and Unified Modeling;Applied Mechanics Reviews;2021-06-15

2. Properties of Material Interfaces: Dynamic Local Versus Nonlocal;Handbook of Nonlocal Continuum Mechanics for Materials and Structures;2019

3. Nonlinear Elastic Problems;Asymptotical Mechanics of Composites;2017-11-10

4. Introduction;Asymptotical Mechanics of Composites;2017-11-10

5. Properties of Material Interfaces: Dynamic Local Versus Nonlocal;Handbook of Nonlocal Continuum Mechanics for Materials and Structures;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3