Numerical Investigation of an Elastomer-Piezo-Adaptive Blade for Active Flow Control of a Nonsteady Flow Field Using Fluid–Structure Interaction Simulations

Author:

Phan Tien Dat1,Springer Patrick1,Liebich Robert1

Affiliation:

1. Department of Engineering Design, Micro and Medical, Berlin Institute of Technology, Berlin 10623, Germany e-mail:

Abstract

In order to prevent critical effects due to pulsed detonation propulsion, e.g., incidence fluctuations, an elastomer-piezo-adaptive stator blade with a deformable front part is developed. Numerical investigations with respect to the interaction of fluid and structure including the piezoelectric properties and the hyperelastic material behavior of an elastomer membrane are conducted in order to investigate the concept of the elastomer-piezo-adaptive blade for developing the best suitable concept for subsequent experiments with a stator cascade in a wind tunnel. Results of numerical investigations of the structure-dynamic and fluid mechanical behavior of the elastomer-piezo-adaptive blade by using a novel fluid–structure-piezoelectric-elastomer-interaction simulation (FSPEI simulation) show that the latent danger of a laminar flow separation at the leading edge at incidence fluctuations can be prevented by using an adaptive blade. Therefore, the potential of the concept of the elastomer-piezo-adaptive blade for active flow control is verified. Furthermore, it is essential to consider the interactions between fluid and structure of the transient FSPEI simulations, since not only the deformation of the adaptive blade affects the flow around the blade, the flow has a significant effect on the dynamic behavior of the adaptive blade, as well.

Funder

Deutsche Forschungsgemeinschaft

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3