Modeling and Measurements of Heat/Mass Transfer in a Linear Turbine Cascade

Author:

Papa F.1,Madanan U.2,Goldstein R. J.1

Affiliation:

1. Heat Transfer Laboratory, Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455

2. Heat Transfer Laboratory, Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455 e-mail:

Abstract

Measurements of the mass/heat transfer coefficients on the blade and end wall surfaces of a linear turbine cascade are compared to numerical predictions using the standard shear stress transport (SST) closure and the SST model in combination with the Reθ–γ transition model (SST-TRANS). Experiments were carried out in a wind tunnel test section composed of five large-scale turbine blades, using the naphthalene sublimation technique. Two cases were tested, with exit Reynolds number of 600,000 and inlet turbulence values of 0.2% and 4%, respectively. The main secondary flow features, consisting of the horseshoe vortex system, the passage vortex, and the corner vortices, are identified and their influence on heat/mass transfer is analyzed. Numerical simulations were carried out to match the conditions of the experiments. Results show that large improvements are obtained with the introduction of the Reθ–γ transition model. In particular, excellent agreement with the experiments is found, for the whole spanwise extension of the blade, on the pressure surface. On the suction surface, performance is very good in the highly three-dimensional region close to the end wall, but some weaknesses appear in predicting the location of transition in the two-dimensional region. On the end wall surface, the SST model in combination with the transition model produces satisfactory results, greatly improved compared to the standard SST model.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3