Effect of Chip and Pad Geometry on Solder Joint Formation in SMT

Author:

Heinrich S. M.1,Liedtke P. E.1,Nigro N. J.2,Elkouh A. F.2,Lee P. S.3

Affiliation:

1. Department of Civil and Environmental Engineering, Marquette University, Milwaukee, WI 53233

2. Department of Mechanical and Industrial Engineering, Marquette University, Milwaukee, WI 53233

3. Allen-Bradley—A Rockwell International Company, Milwaukee, WI 53204

Abstract

An analytical model of solder joint formation during a surface mount reflow process is developed for two-dimensional fillets whose flow may be restricted due to “finite” metallizations on a leadless component and the printed circuit board. Although these height and length constraints on the fillet geometry may result in obtuse contact angles, the solution is obtained in the form of an explicit integral, similar to that previously derived by the authors for the case of acute contact angles. This solution may also be recast into the form of elliptic integrals of the first and second kinds, thereby permitting one to evaluate the fillet geometry using mathematical tables or special function software, if desired, rather than resorting to a computer-based numerical quadrature. In addition an approximate zero-gravity solution is given by means of simple closed-form expressions relating the height, length, contact angles, and cross-sectional area of the fillet. Numerical results generated by implementing the “exact” integral solution for the joint profile are given in the form of dimensionless plots, relating fillet geometry to the solder properties (surface tension and density), amount of solder, chip height, and pad length. Also presented in dimensionless form are the approximate results from the zero-gravity model, which are independent of solder properties, yet are of sufficient accuracy for “small” joints. Because of their dimensionless nature, the results of the present paper may be of maximum utility to process engineers aiming to achieve desired joint geometries (e.g., to maximize fatigue life or to eliminate bridging problems), or to board designers responsible for selecting efficient footprint patterns to maximize board density. Models of solder joint formation, such as the one presented here, may be of most value when used in conjunction with stress analysis packages (e.g., finite element programs) and appropriate fatigue models. In this way an integrated approach to the design of solder joints and circuit boards may be taken, resulting in improved product reliability and performance.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliability of Differently Shaped Solder Joints in Chip Resistor Under Drop Impact;2024 IEEE 74th Electronic Components and Technology Conference (ECTC);2024-05-28

2. Effect of Differently Shaped Solder Joints of Chip Resistor on Fatigue Life;Journal of Electronic Packaging;2023-08-17

3. Enhanced solder fatigue life of chip resistor by optimizing solder shape;Microelectronics Reliability;2023-06

4. Investigation on Fatigue Life of Non-Symmetric Solder Joints in Chip Resistors;2023 IEEE 73rd Electronic Components and Technology Conference (ECTC);2023-05

5. Metal Droplet Deposition: From Foundation to Engineering Manufacturing;Advanced Engineering Materials;2022-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3