An Experimental Study of Local and Mean Heat Transfer in a Triangular-Sectioned Duct Rotating in the Orthogonal Mode

Author:

Clifford R. J.1,Morris W. D.2,Harasgama S. P.2

Affiliation:

1. Rolls-Royce, Ltd, Bristol, England

2. Department of Engineering Design and Manufacture, University of Hull, Hull, England

Abstract

This paper presents a selection of experimental results that examines the influence of orthogonal-mode rotation on local and mean heat transfer in a triangular-sectioned duct with potential application to cooled turbine rotor blades. It is shown that Coriolis acceleration can have a beneficial influence on mean heat transfer relative to the nonrotating case at the lower range of turbulent pipe flow Reynolds numbers studied. Also, rotational buoyancy has been shown to have a noticeable effect over this same Reynolds number range in that progressively increasing buoyancy brings about an attendant reduction in heat transfer. As the Reynolds numbers are increased, say, beyond 30,000, buoyancy effects were found to have little influence on mean heat transfer over the speed range covered. Local axial variations in heat transfer along the duct were also measured, and severe reductions in local heat transfer were detected under certain operating circumstances.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3