Affiliation:
1. G.E.C. Turbine Generators Limited, Trafford Park, Manchester, England
2. Whittle Laboratory, University of Cambridge, Cambridge, England
Abstract
The paper describes a throughflow computational method that combines wet steam theory with an axisymmetric streamline curvature technique in order to predict nonequilibrium effects in low-pressure steam turbines. The computer program developed is able to deal with both subsonic and fully choked supersonic flows, and steam properties are represented by a truncated virial equation of state. A number of theoretical test cases have been investigated, including the nonequilibrium flow in the primary nucleating stage of a low-pressure turbine and the complete analysis of a six-stage, 320-MW operational turbine. The calculations are the first of their kind in being able to provide information on the spanwise variation of the Wilson point, the average droplet size nucleated, the degree of supercooling throughout the flowfield, the thermodynamic wetness loss, and the nonequilibrium choking mass flow rate in addition to the aerodynamic parameters which are of interest to the designer.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献