Nonlinear Stability of Circular Cylindrical Shells in Annular and Unbounded Axial Flow

Author:

Amabili M.1,Pellicano F.2,Pai¨doussis M. A.3

Affiliation:

1. Dipartimento di Ingegneria Industriale, Universita` di Parma, Parco Area delle Scienze 181/Z, Parma I-43100, Italy Mem. ASME

2. Dipartimento di Scienze dell’Ingegneria, Universita` di Modena e Reggio Emilia, Via Campi 213B, Modena I-41100, Italy

3. Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street, W. Montreal, Quebec H3A 2K6, Canada Fellow ASME

Abstract

The stability of circular cylindrical shells with supported ends in compressible, inviscid axial flow is investigated. Nonlinearities due to finite-amplitude shell motion are considered by using Donnell’s nonlinear shallow-shell theory; the effect of viscous structural damping is taken into account. Two different in-plane constraints are applied at the shell edges: zero axial force and zero axial displacement; the other boundary conditions are those for simply supported shells. Linear potential flow theory is applied to describe the fluid-structure interaction. Both annular and unbounded external flow are considered by using two different sets of boundary conditions for the flow beyond the shell length: (i) a flexible wall of infinite extent in the longitudinal direction, and (ii) rigid extensions of the shell (baffles). The system is discretized by the Galerkin method and is investigated by using a model involving seven degrees-of-freedom, allowing for traveling-wave response of the shell and shell axisymmetric contraction. Results for both annular and unbounded external flow show that the system loses stability by divergence through strongly subcritical bifurcations. Jumps to bifurcated states can occur well before the onset of instability predicted by linear theory, showing that a linear study of shell stability is not sufficient for engineering applications.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3