Affiliation:
1. Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 e-mail:
2. Department of Orthopaedics, Dartmouth Hitchcock Medical Center, Lebanon, NH 03766
3. Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
Abstract
Current shoulder clinical range of motion (ROM) assessments (e.g., goniometric ROM) may not adequately represent shoulder function beyond controlled clinical settings. Relative inertial measurement unit (IMU) motion quantifies ROM precisely and can be used outside of clinic settings capturing “real-world” shoulder function. A novel IMU-based shoulder elevation quantification method was developed via IMUs affixed to the sternum/humerus, respectively. This system was then compared to in-laboratory motion capture (MOCAP) during prescribed motions (flexion, abduction, scaption, and internal/external rotation). MOCAP/IMU elevation were equivalent during flexion (R2 = 0.96, μError = 1.7 deg), abduction (R2 = 0.96, μError = 2.9 deg), scaption (R2 = 0.98, μError = −0.3 deg), and internal/external rotation (R2 = 0.90, μError = 0.4 deg). When combined across movements, MOCAP/IMU elevation were equal (R2 = 0.98, μError = 1.4 deg). Following validation, the IMU-based system was deployed prospectively capturing continuous shoulder elevation in 10 healthy individuals (4 M, 69 ± 20 years) without shoulder pathology for seven consecutive days (13.5 ± 2.9 h/day). Elevation was calculated continuously daily and outcome metrics included percent spent in discrete ROM (e.g., 0–5 deg and 5–10 deg), repeated maximum elevation (i.e., >10 occurrences), and maximum/average elevation. Average elevation was 40 ± 6 deg. Maximum with >10 occurrences and maximum were on average 145–150 deg and 169 ± 8 deg, respectively. Subjects spent the vast majority of the day (97%) below 90 deg of elevation, with the most time spent in the 25–30 deg range (9.7%). This study demonstrates that individuals have the ability to achieve large ROMs but do not frequently do so. These results are consistent with the previously established lab-based measures. Moreover, they further inform how healthy individuals utilize their shoulders and may provide clinicians a reference for postsurgical ROM.
Funder
National Center for Advancing Translational Sciences
Subject
Physiology (medical),Biomedical Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献