On the Vibration Isolation of Flexible Structures

Author:

Tu Y. Q.1,Zheng G. T.2

Affiliation:

1. Department of Civil Engineering, Beijing University of Aeronautics and Astronautics, Beijing, China

2. School of Aerospace Engineering, Tsinghua University, Beijing, China

Abstract

Abstract Although the study of vibration isolation has a very long history, when an isolated structure is so flexible that it cannot be properly approximated with a rigid body or a single-degree-of-freedom model, its vibration isolation brings about some new questions and problems. By transforming the dynamic equation of motion of the coupled structure formed by the isolator and the isolated structure into the modal space and following the tradition of studying features of the vibration transmissibility across the isolator, questions and problems associated with the flexible structure vibration isolation are studied. It is found from the study that a lower isolation frequency and a higher damping level can both increase the isolation effectiveness, the isolated structure is a vibration absorber to the isolator, and a combination of the vibration isolation and the vibration attenuation can be more effective in mitigating the vibration. A numerical example of the whole spacecraft vibration isolation has proved the above conclusions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Vibration for Grass Trimmer;Lecture Notes in Mechanical Engineering;2021

2. Passive Isolation by Nonlinear Boundaries for Flexible Structures;Journal of Vibration and Acoustics;2019-05-13

3. Dynamic coupling on the design of space structures;Aerospace Science and Technology;2019-01

4. Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators;Nonlinear Dynamics;2018-12-13

5. Experiments on active precision isolation with a smart conical adapter;Journal of Sound and Vibration;2016-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3