Modeling and Simulation of Material Removal Rates and Profile Accuracy Control in Abrasive Flow Machining of the Integrally Bladed Rotor Blade and Experimental Perspectives

Author:

Cheng Kai1,Shao Yizhi1,Bodenhorst Rodrigo2,Jadva Mitul2

Affiliation:

1. Institute of Materials and Manufacturing, Brunel University London, Uxbridge UB8 3PH, UK e-mail:

2. Institute of Materials and Manufacturing, Brunel University London, Uxbridge UB8 3PH, UK

Abstract

Abrasive flow machining (AFM) technology is getting more and more interest by the industry and research community particularly in the context of increasing demands for postprocessing of the additively manufactured and complex components. It is essentially important to develop an industrial feasible approach to controlling and improving the profile accuracy (form and dimensional) of components as well as their surface roughness. In this paper, a multiscale multiphysics simulation-based approach is presented to model and simulate the AFM process against the component form and dimensional accuracy control in particular. The simulation is developed in comsol which is a multiphysics computational environment. Well-designed AFM experiment trials are carried out on a purposely configured blade “coupon” to further evaluate and validate the simulations. The AFM machine and specific machining media for the experiments are provided by the industrial collaboration company, with their further industrial inputs. Both the simulation and experimental trial results illustrate that the approach is applicable to the blade profile prediction and accuracy control, which is used as a foundation for developing the simulation-based AFM virtual machining system.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3