Implementation of Precision Machine Tool Thermal Error Compensation in Edge-Cloud-Fog Computing Architecture

Author:

Zhang Lin12,Ma Chi12,Liu Jialan12,Gui Hongquan12,Wang Shilong12

Affiliation:

1. Chongqing University College of Mechanical and Vehicle Engineering, , Chongqing 400044 , China ;

2. Chongqing University State Key Laboratory of Mechanical Transmission, , Chongqing 400044 , China

Abstract

Abstract The implementation of precision machine tool thermal error compensation in edge-cloud-fog computing architecture has the potential to control the thermal error. However, the challenges faced by the successful implementation are described as follows: The data collection and transfer efficiency are low, and the control accuracy is not deficient. To address these challenges, a hardware design scheme is proposed for the high-performance intelligent gateway node based on the low-power processor architecture of ARM Cortex-A7. Moreover, a new transformer-improved-gate long short-term memory model is proposed, and then it is embedded into edge-cloud-fog computing architecture. With the implementation of gear profile grinding machine thermal error compensation in edge-cloud-fog computing architecture, the maximum values of the tooth profile tilt deviation are reduced from 17.4 μm to 5.4 μm and from 17.9 μm to 5.8 μm for the left and right tooth flanks, respectively. Moreover, the maximum values of the tooth profile deviation are reduced from 18.9 μm to 6.1 μm and from 18.2 μm to 5.8 μm for the left and right tooth flanks, respectively. Compared with the traditional collection mode, the response delay of the designed intelligent gateway in the acquisition mode is reduced by 40%.

Funder

National Natural Science Foundation of China

Natural Science Foundation Project of Chongqing

Fundamental Research Funds for the Central Universities

Venture & Innovation Support Program for Chongqing

State Key Laboratory for Manufacturing Systems Engineering of Xi’an Jiaotong University

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3