Stabilization Mechanisms of Swirling Premixed Flames With an Axial-Plus-Tangential Swirler

Author:

Jourdaine Paul1,Mirat Clément2,Caudal Jean3,Schuller Thierry4

Affiliation:

1. Air Liquide, Centre de Recherche Paris Saclay, Les Loges en Josas, 78354, Saclay 92295, France e-mail:

2. Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3, rue Joliot Curie, Gif-sur-Yvette cedex 91192, France e-mail:

3. Air Liquide, Centre de Recherche Paris Saclay, Les Loges en Josas, 78354, Saclay 92295, France, e-mail:

4. Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, UPS, Toulouse 31400, France, e-mail:

Abstract

The stabilization of premixed flames within a swirling flow produced by an axial-plus-tangential swirler is investigated in an atmospheric test rig. In this system, flames are stabilized aerodynamically away from the solid components of the combustor without the help of any solid anchoring device. Experiments are reported for lean CH4/air mixtures, eventually also diluted with N2, with injection Reynolds numbers varying from 8500 to 25,000. Changes of the flame shape are examined with OH* chemiluminescence and OH laser-induced fluorescence measurements as a function of the operating conditions. Particle image velocimetry (PIV) measurements are used to reveal the structure of the velocity field in nonreacting and reacting conditions. It is shown that the axial-plus-tangential swirler allows to easily control the flame shape and the position of the flame leading edge with respect to the injector outlet. The ratio of the bulk injection velocity over the laminar burning velocity Ub/SL, the adiabatic flame temperature Tad, and the swirl number S0 are shown to control the flame shape and its position inside the combustion chamber. It is then shown that the axial velocity field produced by the axial-plus-tangential swirler is different from those produced by purely axial or radial devices. It takes here a W-shape profile with three local maxima and two minima. The mean turbulent flame front also takes this W-shape in an axial plane, with two lower positions located slightly off-axis and corresponding to the positions where the axial flow velocity is the lowest. It is finally shown that these positions can be inferred from axial flow velocity profiles under nonreacting conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3