Effect of Liquid Impurities on Corrosion of Carbon Steel in Supercritical CO2

Author:

Ayello Francois1,Evans Kenneth2,Sridhar Narasi1,Thodla Ramgopal2

Affiliation:

1. Det Norske Veritas Research & Innovation, Dublin, OH

2. Det Norske Veritas - Columbus, Dublin, OH

Abstract

The increasing urgency to mitigate global warming has driven many efforts to control green house gas emissions. One solution among many is carbon capture and storage. However, CO2 emitters are not necessarily in the close vicinity of potential geologic storage sites. In consequence CO2 will be transported from generation site to storage sites under high pressures. This will necessitate a network of pipelines gathering supercritical CO2 from diverse sources and transporting it through transmission lines to the storage sites. These pipelines will be under corrosion risks, particularly because of possible carryover of trace impurities produced from the different sources, such as water, chloride, NOx, SOx, and O2. The effects of impurities on corrosion in supercritical CO2 have yet to be evaluated systematically. Corrosion of carbon steel associated with water and impurities in supercritical CO2 was studied by Electrochemical Impedance Spectroscopy in autoclaves. Five impurities were studied by introducing them in the liquid condensed phase: water, amine, HCl, HNO3 and NaOH. Results were analyzed in terms of the phase behavior and speciation.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3