On the Applicability of Extreme Value Statistics in the Prediction of Maximum Pit Depth in Heavily Corroded Non-Piggable Buried Pipelines

Author:

Alfonso L.1,Caleyo F.2,Hallen J. M.2,Araujo J.2

Affiliation:

1. Universidad Auto´noma de la Ciudad de Me´xico, Me´xico, DF, Me´xico

2. Instituto Polite´cnico Nacional, Me´xico, DF, Me´xico

Abstract

There exists a large number of works aimed at the application of Extreme Value Statistics to corrosion. However, there is a lack of studies devoted to the applicability of the Gumbel method to the prediction of maximum pitting-corrosion depth. This is especially true for works considering the typical pit densities and spatial patterns in long, underground pipelines. In the presence of spatial pit clustering, estimations could deteriorate, raising the need to increase the total inspection area in order to obtain the desired accuracy for the estimated maximum pit depth. In most practical situations, pit-depth samples collected along a pipeline belong to distinguishable groups, due to differences in corrosion environments. For example, it is quite probable that samples collected from the pipeline’s upper and lower external surfaces will differ and represent different pit populations. In that case, maximum pit-depth estimations should be made separately for these two quite different populations. Therefore, a good strategy to improve maximum pit-depth estimations is critically dependent upon a careful selection of the inspection area used for the extreme value analysis. The goal should be to obtain sampling sections that contain a pit population as homogenous as possible with regard to corrosion conditions. In this study, the aforementioned strategy is carefully tested by comparing extreme-value-oriented Monte Carlo simulations of maximum pit depth with the results of inline inspections. It was found that the variance to mean ratio, a measure of randomness, and the mean squared error of the maximum pit-depth estimations were considerably reduced, compared with the errors obtained for the entire pipeline area, when the inspection areas were selected based on corrosion-condition homogeneity.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3