Adhesion Forces for Sub-10 nm Flying-Height Magnetic Storage Head Disk Interfaces

Author:

Lee Sung-Chang1,Polycarpou Andreas A.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Abstract

A quasi-dynamic adhesion model is used to calculate the intermolecular adhesion forces present in ultra low flying Head Disk Interfaces (HDI’s). The model is a continuum-based micromechanics model that accounts for realistic surfaces with roughness, molecularly thin lubricants, and is valid under both static and dynamic sliding conditions. Several different levels of surface roughness are investigated ranging from extremely smooth surfaces having a standard deviation of surface heights σ=2 Å to rougher interfaces with several nanometer roughness. It is found that when the flying-height is greater than 5 nm, there are no significant adhesive forces, whereas for flying-heights less than 5 nm, adhesion forces increase sharply, which can be catastrophic to the reliability of low flying HDI’s. In addition to roughness, the apparent area of contact between the flying recording slider and the magnetic disk is also found to significantly affect the magnitude of the adhesion forces. The adhesion model is validated by direct comparisons with adhesion “pull-off” force measurements performed using an Atomic Force Microscope with controlled probe tip areas and magnetic disks having different lubricant thickness.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3