Affiliation:
1. Division of Weapons and Protection, The Swedish Defense Research Agency-FOI, Tumba, Stockholm SE 147 25, Sweden; Department of Shipping and Marine Technology, Chalmers University of Technology, SE 412 96 Göteborg, Sweden
Abstract
The present study concerns the application of large eddy simulation (LES) and implicit LES (ILES) to engineering flow problems. Such applications are often very complicated, involving both complex geometries and complex physics, such as turbulence, chemical reactions, phase changes, and compressibility. The aim of the study is to illustrate what problems occur when attempting to perform such engineering flow calculations using LES and ILES, and put these in relation to the issues originally motivating the calculations. The issues of subgrid modeling are discussed with particular emphasis on the complex physics that needs to be incorporated into the LES models. Results from representative calculations, involving incompressible flows around complex geometries, aerodynamic noise, compressible flows, combustion, and cavitation, are presented, discussed, and compared with experimental data whenever possible.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献