Torque and Bulk Flow of Ferrofluid in an Annular Gap Subjected to a Rotating Magnetic Field

Author:

Chaves Arlex1,Gutman Fernando1,Rinaldi Carlos1

Affiliation:

1. Department of Chemical Engineering, University of Puerto Rico, Mayagüez, P.O. Box 9046, Mayagüez, PR 00681

Abstract

We report analysis and measurements of the torque and flow of a ferrofluid in a cylindrical annulus subjected to a rotating magnetic field perpendicular to the cylinder axis. The presence of the inner cylinder results in a nonuniform magnetic field in the annulus. An asymptotic analysis of the ferrohydrodynamic torque and flow assuming linear magnetization and neglecting the effect of couple stresses indicated that the torque should have a linear dependence on field frequency and quadratic dependence on field amplitude. To the order of approximation of the analysis, no bulk flow is expected in the annular gap between stationary cylinders. Experiments measured the torque required to restrain a polycarbonate spindle surrounded by ferrofluid in a cylindrical container and subjected to the rotating magnetic field generated by a two-pole magnetic induction motor stator, as a function of the applied field amplitude and frequency, and for various values of the geometric aspect ratios of the problem. The ultrasound velocity profile method was used to measure the azimuthal and axial velocity profiles in the ferrofluid contained in the annular gap of the apparatus. Flow measurements show the existence of a bulk azimuthal ferrofluid flow between stationary coaxial cylinders with a negligible axial velocity component. The fluid was found to corotate with the applied magnetic field. Both the torque and flow measurements showed power-of-one dependence on frequency and amplitude of the applied magnetic field. This analysis and these experiments indicate that the action of antisymmetric stresses is responsible for the torque measured on the inner cylinder, whereas the effect of body couples is likely responsible for bulk motion of the ferrofluid.

Publisher

ASME International

Subject

Mechanical Engineering

Reference42 articles.

1. Interfacial Stresses in the Hydrodynamics of Liquids With Internal Rotation;Tsebers;Magn. Gidrodin.

2. Motion of a Magnetic Fluid in a Rotating Magnetic Fluid;Lebedev;Magn. Gidrodin.

3. Magnetic Fluid Motion in Rotating Field;Rosensweig;J. Magn. Magn. Mater.

4. Tangential Stresses on the Magnetic Fluid Boundary and the Rotational Effect;Pshenichnikov;Magnetohydrodynamics (N.Y.)

5. Torque Measurements on Ferrofluid Cylinders in Rotating Magnetic Fields;Rinaldi;J. Magn. Magn. Mater.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3