Affiliation:
1. Department of Metallurgical and Materials Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401
Abstract
A simple and mass productive extrusion technique was applied to fabricate anode-supported tubular solid oxide fuel cells (SOFCs). A standard NiO/8YSZ (nickel oxide/8 mol % yttria stabilized zirconia) cermet anode, 8YSZ electrolyte, and lanthanum strontium manganite (La0.8Sr0.2MnO3) cathode were used as the material components. Secondary electron microscopy images indicated that vacuum infiltration method successfully generated the thin electrolyte layer (about 15 μm) with a structurally effective three phase boundaries. Fabricated unit cell showed the open circuit voltage of 1.12 V without any fuel leaking problems. Electrochemical tests showed a maximum power density up to 0.30 W cm−2 at 800°C, implying the good performance as tubular SOFCs. This study verified that the extrusion aided by vacuum infiltration process could be a promising technique for mass production of tubular SOFCs.
Subject
Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献