Thermal and Hydrodynamic Performance of Aqueous CuO and Al2O3 Nanofluids in an Annular Coiled Tube Under Constant Wall Temperature and Laminar Flow Conditions

Author:

Aly Wael I. A.1

Affiliation:

1. Department of Refrigeration and Air Conditioning Technology, Faculty of Industrial Education, Helwan University, Cairo 11282, Egypt e-mails: ;

Abstract

Laminar flow and heat transfer behaviors of two different metal oxide, Al2O3 (36 nm) and CuO (29 nm), nanofluids flowing through an annular coiled tube heat exchanger (ACTHE) with constant wall temperature boundary condition have been numerically studied to evaluate their superiority over the base fluid (water). Simulations covered a range of nanoparticles volume concentrations of 1.0–6.0% and mass flow rates from 0.025 to 0.125 kg/s. Numerical results indicated that a considerable heat transfer enhancement is achieved by both nanofluids. Results at the same Reynolds number for the pressure drop and heat transfer coefficient show an increase with increasing particle volumetric concentration. The maximum enhancements in heat transfer coefficient were 44.8% and 18.9% for CuO/water and Al2O3/water, respectively. On the other hand, the pressure loss was seven times in comparison to water for CuO/water and about two times for Al2O3/water nanofluid. Also, comparing to the base fluid, nanofluids at low concentrations (up to 3%) can provide the same heat transfer amount at lower pumping power. The overall performance of the enhanced heat transfer technique utilized has been evaluated using a thermohydrodynamic performance index which indicated that Al2O3/water nanofluid is a better choice than CuO/water nanofluid. Moreover, conventional correlations for helical circular tubes for predicting friction factor and average heat transfer in laminar flow regime such as the correlations of Mori and Nakayam and Manlapaz and Churcill, respectively, are also valid for water and the tested nanofluids with small nanoparticle loading in the ACTHE.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3