Optimization of Rectangular Fins With Prime Surface and Bottom Convection

Author:

Falcão C. E. G.1,dos Santos T.1

Affiliation:

1. Department of Mechanical Engineering, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil e-mail:

Abstract

The main goal of this work is to obtain semi-analytical solutions for the geometric optimization of fins considering the presence of a primary surface. Optimized fin dimensions devoted to finned surfaces are already available in the literature; however, these solutions have as assumption a known fin base temperature. In contrast, in many practical situations, employed fins are attached to a primary surface that has restricted dimensions due to design requirements. In these cases, the primary surface dimensions are kept fixed and the known condition is a temperature or convective condition prescribed on the primary surface boundary. For such scenarios, to the best of our knowledge, there are no simple analytical expressions derived in the literature. Thus, reasoning on this main problem, in the present work, analytical optimum expressions are derived in order to deal with this kind of applications. The obtained analytical equations are subsequently compared with optimum results acquired from numerical calculations. In summary, both analytical and numerical results show a good agreement. The main contribution of this work is to provide closed solutions for the mentioned optimization problem, thus allowing the construction of simple charts, facilitating the corresponding fin design process.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3