Affiliation:
1. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, South Korea e-mail:
Abstract
In this paper, we present an approach for characterizing the interfacial region using the molecular dynamics (MD) simulations and the shear deformation model (SDM). The bulk-level mechanical properties of graphene-reinforced nanocomposites strongly depend on the interfacial region between the graphene and epoxy matrix, whose thickness is about 6.8–10.0 Å. Because it is a challenge to experimentally investigate mechanical properties of this thin region, computational MD simulations have been widely employed. By pulling out graphene from the graphene/epoxy system, pull-out force and atomic displacement of the interfacial region are calculated to characterize the interfacial shear modulus. The same processes are applied to 3% grafted hydroxyl and carboxyl functionalized graphene (OH-FG and COOH-FG)/epoxy (diglycidyl ether of bisphenol F (DGEBF)/triethylenetetramine (TETA)) systems, and influences of the functionalization on the mechanical properties of the interfacial region are studied. Our key finding is that, by functionalizing graphene, the pull-out force moderately increases and the interfacial shear modulus considerably decreases. We demonstrate our results by comparing them with literature values and findings from experimental papers.
Funder
National Research Foundation of Korea
Seoul National University
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献