Mechanics of Fatigue Damage and Degradation in Random Short-Fiber Composites, Part I—Damage Evolution and Accumulation

Author:

Wang S. S.1,Chim E. S.-M.1,Suemasu H.1

Affiliation:

1. Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, IL 61801

Abstract

Cyclic fatigue damage in random short-fiber composites is studied experimentally and analytically. In the experimental phase of the study, the fatigue damage is observed to involve various forms of microcracking, originated from microscopic stress concentrators in the highly heterogeneous microstructure. In the analytical portion of the study, a probabilistic treatment of the microcracks is conducted to evaluate the statistical nature of the microscopic fatigue damage. The density and the cumulative distribution of microcrack lengths are found to follow the well known Weibull-form function, and the microcrack orientation density and cumulative distribution have expressions of a fourth-order power form of the cosθ function. Fatigue damage evolution and accumulation in the random short-fiber composite are analyzed in detail through the development of probabilistic microcrack density and distribution functions during the cyclic loading history.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Problems in short-fiber composites and analysis of chopped fiber-reinforced materials;New Materials in Civil Engineering;2020

2. Failure of polymer matrix composites (PMCs) in automotive and transportation applications;Failure Mechanisms in Polymer Matrix Composites;2012

3. Microstructure-dependent fatigue damage process in short fiber reinforced plastics;International Journal of Solids and Structures;2010-02

4. Fatigue of Fiber Composites;Materials Science and Technology;2006-09-15

5. Short-fibre thermoset composites;Fatigue in Composites;2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3