On the Magnetic Field Effect in Electroconductive Plates Under Nonconservative Loading

Author:

Milanese A.1,Marzocca P.1,Belubekyan M.2,Ghazaryan K.2,Mkrtchyan H. P.2

Affiliation:

1. Department of Mechanical and Aeronautical Engineering, Clarkson University, P. O. Box. 5725, Potsdam, NY 13699

2. Institute of Mechanics, National Academy of Sciences of Armenia, 24 Marshal Baghramian Avenue, Yerevan 375019, Armenia

Abstract

This work investigates the behavior of an electroconductive plate under the action of a nonconservative load and subjected to a transversal magnetic field. The governing equation of the bending vibrations of an electroconductive plate, subjected to a transverse magnetic field and a follower type force at one edge, is presented. The assumption of an elongated plate leads to a simplified equation, which is conveniently written in dimensionless terms. For a cantilevered configuration, the characteristic equation relative to the magnetoelastic modes of vibration of the system is derived. Approximate solutions based on Galerkin method and an adjoint formulation are also presented and compared with the semi-analytical results. Root loci plots are computed as a function of the proper dimensionless parameters. The behavior of the system is very similar to the one exhibited by other structures subjected to nonconservative loads when damping is present. A relaxed definition of stability is used to regain continuity in the instability envelope.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gap Surface Waves in a System of Two Elastic Superconducting Semispaces Separated by a Narrow Gap;Journal of Applied Mechanics;2011-08-25

2. Paradoxes of dissipation-induced destabilization or who opened Whitney's umbrella?;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2010-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3