Verification, Validation, and Uncertainty Quantification in Thermal Hydraulics, Freeman Scholar Lecture (2019)

Author:

Rohatgi Upendra S.1

Affiliation:

1. Brookhaven National Laboratory , Building 490C, Upton, NY 11973

Abstract

Abstract Engineering problems are generally solved by analytical models or computer codes. These models, in addition to conservation equations, also include many empirical relationships and approximate numerical methods. Each of these components contributes to the uncertainty in the prediction. A systematic approach to judge the applicability of the code to the intended application is needed. It starts from verification of implementation of formulation in the code, identification of important phenomena, finding relevant tests with quantified uncertainty for these phenomena, and validation of the code by comparing predictions with the relevant test data. The relevant tests must address phenomena as expected in the intended application. In case of small size or limited condition tests, the scaling analyses are needed to assess the relevancy of the tests. Finally, a statement of uncertainty in the prediction is needed. Systematic approaches are described to aggregate uncertainties from different components of the code for intended application. In this paper, verification, validation, and uncertainty quantifications (VVUQs) are briefly described.

Funder

Office of Nuclear Energy

Publisher

ASME International

Subject

Mechanical Engineering

Reference46 articles.

1. Perspective: Validation—What Does It Mean?;ASME J. Fluids Eng.,2009

2. Historical Perspectives of BEPU Research in US;Nucl. Eng. Des.,2020

3. Comments on Policy Statement on the Control of Numerical Accuracy;ASME J. Fluids Eng.,1993

4. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer;ASME V&V-20 Guideline,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3