The Influence of Deterministic Surface Roughness and Freestream Turbulence on Transitional Boundary Layers: Heat Transfer Distributions and a New Transition Onset Correlation

Author:

Gramespacher Christoph1,Stripf Matthias1,Bauer Hans-Jörg2

Affiliation:

1. Institute for Thermo-Fluid-Dynamics, Karlsruhe University of Applied Sciences, Karlsruhe 76133, Germany

2. Institute of Thermal Turbomachinery, Karlsruhe Institute of Technology, Karlsruhe 76133, Germany

Abstract

Abstract Heat transfer measurements in transitional flat plate boundary layers subjected to surface roughness, strong pressure gradients, and freestream turbulence are presented. The surfaces considered consist of a smooth reference and 26 deterministic surface topographies that vary in roughness element aspect ratio, height, and density. They are designed to cover the full range of roughness regimes from smooth over transitionally rough to fully rough. For each surface, two pressure distributions, characteristic for a suction and a pressure side turbine vane, are investigated. Inlet Reynolds numbers range from 3.0 × 105 to 6.0 × 105 and inlet turbulence intensity is varied between 1% and 8%. Furthermore, different turbulence Reynolds numbers, i.e., turbulence length scales, are realized while the incident turbulence intensity is kept constant. Additionally, the turbulence intensity and Reynolds stress distributions in the freestream along the flat plate are measured using x-wire probes. Results show a strong influence of roughness and turbulence intensity on the onset of transition. The new data set is used to develop an improved correlation considering the roughness height, density, and shape as well as the turbulence intensity and turbulent length scales.

Publisher

ASME International

Subject

Mechanical Engineering

Reference31 articles.

1. External Heat Transfer Enhancement to Turbine Blading Due to Surface Roughness;Tarada,1993

2. The Many Faces of Turbine Surface Roughness;Bons;ASME J. Turbomach.,2001

3. Assessment of Real Turbine Blade Roughness Parameters for the Design of a Film Cooling Test Rig;Glasenapp,2017

4. Direct Numerical Simulations of Bypass Transition Over Distributed Roughness;von Deyn;AIAA J.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3