Dynamic Fracture Process in Beams

Author:

Colton J. D.1,Herrmann G.2

Affiliation:

1. Engineering Mechanics Group, Poulter Laboratory, Stanford Research Institute, Menlo Park, Calif.

2. Department of Applied Mechanics, Stanford University, Stanford, Calif.

Abstract

The relief waves created by the dynamic fracture of a brittle beam were determined. An experiment was conducted on an effectively infinite beam loaded over a finite area with sheet explosive. The time sequence of deformation and fracture was determined by terminal observation, high-speed framing camera photographs, and strain gages. Beam response was also predicted analytically by numerically integrating the characteristic equations of Timoshenko beam theory. Comparison of calculated and measured strains showed that the effect of an initial fracture in a beam at a location of pure bending can be approximated by a two-stage process that specifies how the bending moment at the fracture point is reduced to zero after fracture. In the first stage, the crack propagates to the neutral axis, and the stress distribution remains unchanged. In the second stage, the crack propagates through the remainder of the beam thickness while the stress continuously redistributes itself.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3