Thermophysical Analysis of Microconfined Turbulent Flow Regimes at Supercritical Fluid Conditions in Heat Transfer Applications

Author:

Bernades Marc1,Jofre Lluís1

Affiliation:

1. Department of Fluid Mechanics, Technical University of Catalonia, Barcelona 08019, Spain

Abstract

Abstract The technological opportunities enabled by understanding and controlling microscale systems have not yet been capitalized to disruptively improve energy processes, especially heat transfer and power generation. The main limitation corresponds to the laminar flows typically encountered in microdevices, which result in small mixing and transfer rates. This is a central unsolved problem in the thermal–fluid sciences. Therefore, this work focuses on analyzing the potential of supercritical fluids to achieve turbulence in microconfined systems by studying their thermophysical properties. In particular, a real-gas thermodynamic model, combined with high-pressure transport coefficients, is utilized to characterize the Reynolds number achieved as a function of supercritical pressures and temperatures. The results indicate that fully turbulent flows can be attained for a wide range of working fluids related to heat transfer applications, power cycles and energy conversion systems, and presenting increment ratios of O(100) with respect to atmospheric (subcritical) thermodynamic conditions. The underlying physical mechanism to achieve relatively high Reynolds numbers is based on operating within supercritical thermodynamic states (close to the critical point and pseudo-boiling region) in which density is relatively large while dynamic viscosity is similar to that of a gas. In addition, based on the Reynolds numbers achieved and the thermophysical properties of the fluids studied, an assessment of heat transfer at turbulent microfluidic conditions is presented to demonstrate the potential of supercritical fluids to enhance the performances of standard microfluidic systems by factors up to approximately 50×.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference51 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3