Charging Station of a Planar Miniature Heat Pipe Thermal Ground Plane

Author:

Ababneh Mohammed T.1,Chauhan Shakti2,Gerner Frank M.,Hurd Doug3,de Bock Peter,Deng Tao2

Affiliation:

1. School of Dynamic Systems, Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221 e-mail:

2. General Electric Global Research Center, Niskayuna, NY 12309

3. School of Dynamic Systems, Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221

Abstract

Thermal ground planes (TGPs) are planar, thin (thickness of 3 mm or less) heat pipes which use two-phase heat transfer. The objective is to utilize TGPs as thermal spreaders in several microelectronic cooling applications. TGPs are innovative high-performance, integrated systems able to operate at a high power density with a reduced weight and temperature gradient. Moreover, being able to dissipate large amounts of heat, they have very high effective axial thermal conductivities and can operate in high adverse gravitational fields due to nanoporous wicks. A key factor in the design of the TGP is evacuation prior to filling and introduction of the proper amount of working fluid (water) into the device. The major challenge of this work is to fill heat pipes with a total liquid volume of less than 1 ml, without being able to see into the device. The current filling station is an improvement over the current state of the art as it allows for accurate filling of microliter sized volumes. Tests were performed to validate performance of the system and to verify that little to no noncondensable gasses were introduced to the system. Careful calibration of the amount of liquid introduced is important. Therefore, calibration of the burettes utilized for a liquid fill range of 0.01 ml to 100 ml was important. The magnitude of the pressure inside the TGP device is also an important factor. Charging station validation demonstrated the capability of charging TGPs with accuracy of ±1.64 μl. Calibration curves for the burettes and error characterization curves for a range of liquid charging volumes will be presented and discussed in this paper.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancement of evaporative heat transfer on carbon nanotube sponges by electric field reinforced wettability;Applied Surface Science;2018-10

2. Charging of miniature flat heat pipes;Heat and Mass Transfer;2018-04-28

3. The Engineering History of Thermal Materials;Bioinspired Engineering of Thermal Materials;2018-02-23

4. Recent advances in MEMS-based micro heat pipes;International Journal of Heat and Mass Transfer;2017-07

5. Experimental investigation of vapor chambers with different wick structures at various parameters;Experimental Thermal and Fluid Science;2016-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3