Short-Circuit Fault Detection and Quantitative Analysis Based on Mean-Difference Model With Variational Modal Decomposition

Author:

Chang Chun1,Wang Zile1,Zhang Zhen1,Jiang Jiuchun23,He Xing4,Tian Aina1,Jiang Yan3

Affiliation:

1. Hubei University of Technology Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, , Wuhan 430068 , China

2. Hubei University of Technology Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, , Wuhan 430068 , China ;

3. Sunwoda Electronic Co., Ltd. , Shenzhen 518108 , China

4. China National Institute of Standardization Institute of Product Safety, , Beijing 100191 , China

Abstract

Abstract Short-circuit failure is one of the triggers for thermal runaway of lithium-ion batteries, which can lead to serious safety issues. This paper attempts to estimate the short-circuit resistance of the cell using the mean difference model and relies on the estimated results to make a quantitative analysis of short-circuit fault. To achieve this goal, a combination of forgetting factor recursive least squares and extended Kalman filter is used to estimate the average open-circuit voltage within the battery pack. Subsequently, since both the open-circuit voltage (OCV) and intrinsic mode function (IMF0) components reflect the low-frequency characteristics of the battery voltage, we propose a new method based on the variational modal decomposition to extract the differential open-circuit voltage of the battery and finally make an estimate of the short-circuit resistance after obtaining OCV of the battery using the idea of the mean difference model (MDM). In addition, the effectiveness of the proposed method is verified under different degrees of short-circuit faults by connecting different resistors to the series battery pack.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3