Transient Temperature Distribution in a Half-Space Due to Local Surface Heating Via Non-Fourier Fractional Dual-Phase-Lag Model

Author:

Zhang Xue-Yang1,Hu Ying1,Li Xian-Fang1

Affiliation:

1. School of Civil Engineering, Central South University , Changsha 410075, China

Abstract

Abstract The non-Fourier heat transfer in a half-space is analyzed under sudden heating or cooling on a local surface. The non-Fourier heat transfer effect is described by the time-fractional dual-phase-lag (DPL) model, where the fractional derivative without singular kernel is used. An axisymmetric mixed initial-boundary value problem is solved by the use of the Hankel and Laplace transforms. Two typical cases of sudden temperature rising on a circular zone of the surface or an instantaneous surface heat source are analyzed. For sudden temperature rises, the heat flux and temperature gradient exhibit an inverse square-root singularity near the boundary of the heating zone and their dynamic intensity factors are computed numerically in the time domain. For the instantaneous surface point heat source, an exact solution of the transient temperature at any position in the Laplace domain is obtained. The effects of the fractional order and relaxation time on the temperature distribution and heat flux response are elucidated. The singular behavior of the transient thermal response and the non-Fourier effect of heat transfer are shown.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3