Modeling the Elastic Properties of Reticulated Porous Ceramics

Author:

Sedler Stephen J.1,Chase Thomas R.1,Davidson Jane H.1

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota—Twin Cities, 111 Church Street SE, Minneapolis, MN 55455 e-mail:

Abstract

A model to predict the elastic material properties of reticulated porous ceramics (RPCs) based on the microstructural geometry is presented. The RPC is represented by a repeating unit structure of truncated octahedrons (tetrakaidecahedrons) with the ligaments represented by the cell edges. The deformations of the ligaments in the cellular structure under applied loads are used to determine the effective moduli and Poisson's ratio of the bulk material. The ligament cross section is represented as having a Plateau border exterior surface with a cusp half-angle that is varied between 0 and 90 deg, and a Plateau border interior void with a cusp half-angle of zero, representative of the ranges seen in RPCs. The ligament cross-sectional area is permitted to vary along its length and the distance between internal and external cusps is assumed constant. The relative density of the foam, corresponding to the length, cusp distances, and external-cusp half-angle of the ligaments, is determined using solid geometry. The relative density has the dominant effect on the moduli, while normalized ligament length varies the moduli by 11–49% at a specified relative density. The impact of the external shape of a ligament on the relative moduli is insignificant. The model is validated through comparisons with the measured elastic properties of RPCs in the literature and new data. The model is the first to consider the effect of the microstructural features of ligaments of RPCs on the elastic moduli of the bulk material.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3