Effect of Fuel Injection Pressure and Premixed Ratio on Mineral Diesel-Methanol Fueled Reactivity Controlled Compression Ignition Mode Combustion Engine

Author:

Singh Akhilendra Pratap1,Sharma Nikhil1,Satsangi Dev Prakash1,Agarwal Avinash Kumar1

Affiliation:

1. Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India

Abstract

Abstract Reactivity controlled compression ignition (RCCI) mode combustion has attracted significant attention because of its superior engine performance and significantly lower emissions of oxides of nitrogen (NOx) and particulate matter (PM) compared with conventional compression ignition (CI) mode combustion engines. In this experimental study, effects of fuel injection pressure (FIP) of high reactivity fuel (HRF) and premixed ratio of low reactivity fuel (LRF) were evaluated on a diesel-methanol fueled RCCI mode combustion engine. Experiments were performed in a single cylinder research engine at a constant engine speed (1500 rpm) and constant engine load (3 bar BMEP) using three different FIPs (500, 750, and 1000 bar) of mineral diesel and four different premixed ratios (rp = 0, 0.25, 0.50, and 0.75) of methanol. Results showed that RCCI mode resulted in more stable combustion compared with baseline CI mode combustion. Increasing FIP resulted in relatively higher knocking, but it reduced with increasing premixed ratio. Relatively higher brake thermal efficiency (BTE) of RCCI mode combustion compared with baseline CI mode combustion is an important finding of this study. BTE increased with increasing FIP of mineral diesel and increasing premixed ratio of methanol. Relatively dominant effect of increasing FIP on BTE at higher premixed ratios of methanol was also an important finding of this study. RCCI mode combustion resulted in higher carbon monoxide (CO) and hydrocarbon (HC) emissions, but lower PM and NOx emissions compared with baseline CI mode combustion. Increasing FIP of HRF at lower premixed ratios reduced the number concentration of particles; however, effect of FIP became less dominant at higher premixed ratios. Relatively higher number emissions of nanoparticles at higher FIPs were observed. Statistical and qualitative correlations exhibited the importance of suitable FIP at different premixed ratios of LRF on emission characteristics of RCCI mode combustion engine.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference46 articles.

1. Statistical Year Book India 2017. Report issues by Ministry of Statistics & Programme Implementation. http://www.mospi.nic.in/statistical-year-book-india/2017/189, Accessed March 24, 2020.

2. Toxicity and Mutagenicity of Exhaust From Compressed Natural Gas: Could This be a Clean Solution for Megacities With Mixed-Traffic Conditions?;Agarwal;Environ. Pollut.,2018

3. Mutagenicity and Cytotoxicity of Particulate Matter Emitted From Biodiesel-Fueled Engines;Agarwal;Environ. Sci. Technol.,2018

4. Experimental Evaluation of Sensitivity of Low-Temperature Combustion to Intake Charge Temperature and Fuel Properties;Singh;Int. J. Engine Res.,2018

5. Combustion Characteristics of Diesel HCCI Engine: An Experimental Investigation Using External Mixture Formation Technique;Singh;Appl. Energy,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3