Affiliation:
1. Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
Abstract
Abstract
This paper describes an experimental study on a combined assembly of a solar pond and two-phase thermosyphon toward thermoelectric power generation under actual weather conditions and proposes its mandatory association with the biomass energy-based system. Experiments under the studied solar radiation intensity ranging between 26 W/m2 and 976 W/m2 reveal that the maximum steady-state temperature potential during the actual operation of a solar pond is not sufficient to generate the minimum threshold thermoelectric voltage for deriving necessary power needed to recharge a 12 V battery. It is also highlighted that solar radiation heats both the upper and the lower layers nearly equally; however, the heat is lost at a faster rate from the upper layer than the lower layer. Consequently, with the passage of time, the temperature of the lower layer rises, and interestingly, the probability of obtaining maximum voltage during a day is maximum during the early morning. Under the present set of conditions, the maximum temperature gain is 26.58 °C, whereas a minimum temperature potential of 45.62 °C is found necessary to produce the required voltage. The economic analysis of the proposed system reveals that the electricity generation obtained from the proposed system is better than diesel power generation. In particular, the system is suitable for locations where access to the conventional grid-based power is difficult. The work opens opportunities and establishes the necessity of developing low-cost thermoelectric materials for further improving the cost of power generation.
Funder
Science and Engineering Research Board
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献