Computationally Inexpensive Metamodel Assessment Strategies

Author:

Meckesheimer Martin1,Barton Russell R.1,Simpson Timothy W.1,Booker Andrew J.2

Affiliation:

1. Pennsylvania State University, University Park, PA

2. Boeing Company, Bellevue, WA

Abstract

Abstract In many scientific and engineering domains, it is common to analyze and simulate complex physical systems using mathematical models. Although computing resources continue to increase in power and speed, discipline-specific computer simulation modules continue to grow in complexity and remain computationally expensive, limiting their use in design optimization. The use of different approximation strategies as inexpensive metamodels of the discipline-specific simulation models has led to the development of various metamodel-based integration frameworks and associated research topics. In particular, integration of the discipline-specific metamodels requires an assessment of the overall system error based on the individual approximation errors. As a result, there is a need to develop efficient methods to assess metamodel fidelity at the system and subsystem level. In this paper, we investigate computationally inexpensive assessment methods for metamodel validation at the subsystem level and evaluate a two-stage validation approach on two classes of test problems: 1. Three response functions from a Boeing simulation model, and 2. two response functions from a set of problems for testing optimization codes. Preliminary results indicate that the two stage-validation approach is promising, since it requires no additional computationally expensive disciplinary model evaluations and can provide a practical estimate of the true error measure.

Publisher

American Society of Mechanical Engineers

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3