Affiliation:
1. Academy of Sciences of the Czech Republic, Prague, Czech Republic
Abstract
Abstract
The impact oscillator is the simplest mechanical system with one degree of freedom, the periodically excited mass of which can impact on the stop. The aim of this paper is to explain the dynamics of the system, when the stiffness of the stop changes from zero to infinity. It corresponds to the transition from the linear system into strongly nonlinear system with rigid impacts. The Kelvin-Voigt and piecewise linear model of soft impact was chosen for the study. New phenomena in the dynamics of motion with soft impacts in comparison with known dynamics of motion with rigid impacts are introduced in this paper.
Publisher
American Society of Mechanical Engineers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献