A General Macroscopic Model for Turbulent Flow in Porous Media

Author:

Jouybari Nima F.1,Maerefat Mehdi1,Staffan Lundström T.2,Nimvari Majid E.3,Gholami Zahra4

Affiliation:

1. Department of Mechanical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran 1411713116, Iran e-mail:

2. Division of Fluid Mechanics, Luleå University of Technology, Luleå 971 87, Sweden e-mail:

3. Faculty of Engineering Technologies, Amol University of Special Modern Technologies, Amol 4614849767, Iran e-mail:

4. Department of Food and Agriculture, Standard Research Institute, Karaj 3174734563, Iran e-mail:

Abstract

The present study deals with the generalization of a macroscopic turbulence model in porous media using a capillary model. The additional source terms associated with the production and dissipation of turbulent kinetic energy due to the presence of solid matrix are calculated using the capillary model. The present model does not require any prior pore scale simulation of turbulent flow in a specific porous geometry in order to close the macroscopic turbulence equations. Validation of the results in packed beds, periodic arrangement of square cylinders, synthetic foams, and longitudinal flows such as pipes, channels, and rod bundles against available data in the literature reveals the ability of the present model in predicting turbulent flow characteristics in different types of porous media. Transition to the fully turbulent regime in porous media and different approaches to treat this phenomenon are also discussed in the present study. Finally, the general model is modified so that it can be applied to lower Reynolds numbers below the range of fully turbulent regime in porous media.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3