Affiliation:
1. Composites Processing Laboratory, Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269-3139
Abstract
Curing is an important and time consuming step in the fabrication of thermosetting-matrix composite products. The use of embedded resistive heating elements providing supplemental heating from within the material being cured has been shown in previous studies (Ramakrishnan, Zhu, and Pitchumani, 2000, J. Manuf. Sci. Eng., 122, pp. 124–131; and Zhu and Pitchumani, 2000, Compos. Sci. Technol., 60, 2699–2712.) to offer significant improvements in cure cycle time and cure uniformity, due to the inside-out curing. This paper addresses the problem of determining the temperature and electrical current cycles, as well as the placement configuration of the conductive mats, for time-optimal curing of composites using embedded resistive heating elements. A continuous search simulated annealing optimization technique is utilized coupled with a numerical process simulation model to determine the optimal solutions for selected process constraints. Optimization results are presented over a range of material systems and different numbers of conductive mats to assess the effects of materials reactivity on the optimal number of conductive mats.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献