Thermally Conductive and Highly Electrically Resistive Grease Through Homogeneously Dispersing Liquid Metal Droplets Inside Methyl Silicone Oil

Author:

Mei Shengfu1,Gao Yunxia1,Deng Zhongshan1,Liu Jing2

Affiliation:

1. Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

2. Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China e-mail:

Abstract

Thermal grease, as a thermal interface material (TIM), has been extensively applied in electronic packaging areas. Generally, thermal greases consist of highly thermally conductive solid fillers and matrix material that provides good surface wettability and compliance of the material during application. In this study, the room-temperature liquid metal (a gallium, indium and tin eutectic, also called Galinstan) was proposed as a new kind of liquid filler for making high performance TIMs with desired thermal and electrical behaviors. Through directly mixing and stirring in air, liquid metal micron-droplets were accidentally discovered capable to be homogeneously distributed and sealed in the matrix of methyl silicone oil. Along this way, four different volume ratios of the liquid metal poly (LMP) greases were fabricated. The thermal and electrical properties of the LMP greases were experimentally investigated, and the mechanisms were clarified by analyzing their surface morphologies. The experimental results indicate that the original highly electrically conductive liquid metal can be turned into a highly electrically resistive composite, by simply blending with methyl silicone oil. When the filler content comes up to 81.8 vol. %, the thermal conductivity, viscosity and volume resistivity read 5.27 W/(m · °C), 760 Pa · s and 1.07 × 107 Ω m, respectively. Furthermore, the LMP greases presented no obvious corrosion effect, compared with pure liquid metal. This study opens a new approach to flexibly modify the material behaviors of the room-temperature liquid metals. The resulted thermally conductive however highly electrically resistive LMP greases can be significant in a wide variety of electronic packaging applications.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3