Topology Optimization Method for Designing Compliant Mechanism With Given Constant Force Range

Author:

Liang Junwen1,Zhang Xianmin1,Zhu Benliang1,Zhang Hongchuan1,Wang Rixin1

Affiliation:

1. South China University of Technology Guangdong Province Key Laboratory of Precision Equipment and Manufacturing Technology, , Guangzhou 510640 , China

Abstract

Abstract This article presents a modified evolutionary topology optimization method for designing compliant constant force mechanisms (CFMs). CFM is defined as the mechanism that can generate constant force in the desired input displacement range, which is known as a constant force range. The force variation, i.e., fluctuation of output forces over the constant force range, is a critical parameter that reflects the stability of the output force. The key idea of the new method is that the design variables are increased or decreased for a certain small value instead of being changed between 0 (or xmin) and 1 in other evolutionary structural optimization (ESO) methods. As the CFMs have to experience a large deformation when it works, the influence of the nonlinearity needs to be considered. An additive hyperelasticity technique is utilized to alleviate the instability of the finite element analysis, which is introduced by the low-stiffness elements. The numerical examples show that the proposed design method can generate CFMs with desired constant force range and aspect ratio. The optimized CFM is manufactured by 3D printing, and the experimental result indicates that it can output an almost constant force (force variation ≤2%) in a large relative constant force range (56.7%).

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3