Affiliation:
1. USAF Test Pilot School, 220 Wolfe Avenue, Edwards AFB, CA 93524 e-mail:
2. Air Force Institute of Technology, 2950 Hobson Way, WPAFB, OH 45433 e-mail:
3. Air Force Research Laboratory, 1950 7th Street, WPAFB, OH 45433 e-mail:
4. Innovative Scientific Solutions Inc., 1950 7th Street, WPAFB, OH 45433 e-mail:
Abstract
The rapid expansion of the market for remotely piloted aircraft (RPA) includes a particular interest in 10–25 kg vehicles for monitoring, surveillance, and reconnaissance. Power-plant options for these aircraft are often 10–100 cm3 internal combustion engines (ICEs). The present study builds on a previous study of loss pathways for small, two-stroke engines by quantifying the trade space among energy pathways, combustion stability, and engine controls. The same energy pathways are considered in both studies—brake power, heat transfer from the cylinder, short circuiting, sensible exhaust enthalpy, and incomplete combustion. The engine controls considered in the present study are speed, equivalence ratio, combustion phasing (ignition timing), cooling-air flow rate, and throttle. Several options are identified for improving commercial-off-the-shelf (COTS)-engine efficiency and performance for small, RPA. Shifting from typical operation at an equivalence ratio of 1.1–1.2 to lean operation at an equivalence ratio of 0.8–0.9 results in a 4% (absolute) increase in fuel-conversion efficiency at the expense of a 10% decrease in power. The stock, linear timing maps are excessively retarded below 3000 rpm, and replacing them with custom spark timing improves ease of engine start. Finally, in comparison with conventional-size engines, the fuel-conversion efficiency of the small, two-stroke ICEs improves at throttled conditions by as much as 4–6% (absolute) due primarily to decreased short-circuiting. When no additional short-circuiting mitigation techniques are employed, running a larger engine at partial throttle may lead to an overall weight savings on longer missions. A case study shows that at 6000 rpm, the 3W-55i engine at partial throttle will yield an overall weight saving compared to the 3W-28i engine at wide-open throttle (WOT) for missions exceeding 2.5 h (at a savings of ∼5 g/min).
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献