Boiling Heat Transfer in a Shallow Fluidized Particulate Bed

Author:

Chuah Y. K.1,Carey V. P.2

Affiliation:

1. Solar Energy Research Institute, Golden, CO 80401

2. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

Experimental data are presented which indicate the effects of a thin layer of unconfined particles on saturated pool boiling heat transfer from a horizontal surface. Results are presented for two different types of particles: (1) 0.275 and 0.475-mm-dia glass spheres which have low density and thermal conductivity, and (2) 0.100 and 0.200-mm-dia copper spheres which have high density and thermal conductivity. These two particle types are the extremes of particles found as corrosion products or contaminants in boiling systems. To ensure that the surface nucleation characteristics were well defined, polished chrome surfaces with a finite number of artificial nucleation sites were used. Experimental results are reported for heat fluxes between 20 kW/m2 and 100kW/m2 using water at 1 atm as a coolant. For both particle types, vapor was observed to move upward through chimneys in the particle layer, tending to fluidize the layer. Compared with ordinary pool boiling at the same surface heat flux level, the experiments indicate that addition of light, low-conductivity particles significantly increases the wall superheat, whereas addition of heavier, high-conductivity particles decreases wall superheat. Heat transfer coefficients measured in the experiments with a layer of copper particles were found to be as much as a factor of two larger than those measured for ordinary pool boiling at the same heat flux level. The results further indicate that at least for thin layers, the boiling curve is insensitive to layer thickness. These results are shown to be consistent with the expected effects of the particles on nucleation, fluid motion, and effective conductivity in the pool at or near the surface. The effect of surface nucleation site density on heat transfer with a particle layer present is also discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3