Flame Dynamics Intermittency in the Bistable Region Near a Subcritical Hopf Bifurcation

Author:

Ebi D.1,Denisov A.2,Bonciolini G.3,Boujo E.3,Noiray N.4

Affiliation:

1. Laboratory for Thermal Processes and Combustion, Paul Scherrer Institute, Villigen 5232, Switzerland e-mail:

2. Institute of Thermal and Fluid Engineering, School of Engineering Hochschule für Technik FHNW, Windisch 5210, Switzerland e-mail:

3. CAPS Laboratory, Mechanical and Process Engineering Department, ETH Zürich, Zürich 8092, Switzerland

4. CAPS Laboratory, Mechanical and Process Engineering Department, ETH Zürich, Zürich 8092, Switzerland e-mail:

Abstract

We report experimental evidence of thermoacoustic bistability in a lab-scale turbulent combustor over a well-defined range of fuel–air equivalence ratios. Pressure oscillations are characterized by an intermittent behavior with “bursts,” i.e., sudden jumps between low and high amplitudes occurring at random time instants. The corresponding probability density functions (PDFs) of the acoustic pressure signal show clearly separated maxima when the burner is operated in the bistable region. The gain and phase between acoustic pressure and heat release rate fluctuations are evaluated at the modal frequency from simultaneously recorded flame chemiluminescence and acoustic pressure. The representation of the corresponding statistics is new and particularly informative. It shows that the system is characterized, in average, by a nearly constant gain and by a drift of the phase as function of the oscillation amplitude. This finding may suggest that the bistability does not result from an amplitude-dependent balance between flame gain and acoustic damping, but rather from the nonconstant phase difference between the acoustic pressure and the coherent fluctuations of heat release rate.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3