Accuracy of an Apparatus for Measuring Glenoid Baseplate Micromotion in Reverse Shoulder Arthroplasty

Author:

Torkan Lawrence F.12,Bryant John T.34,Bicknell Ryan T.56,Ploeg Heidi-Lynn34

Affiliation:

1. Centre for Health Innovation, Queen's University , Kingston, ON M5B0B7, Canada ; , Kingston, ON M5B0B7, Canada

2. Department of Mechanical and Materials Engineering, Queen's University , Kingston, ON M5B0B7, Canada ; , Kingston, ON M5B0B7, Canada

3. Centre for Health Innovation, Queen's University , Kingston, ON K7L3N6, Canada ; , Kingston, ON K7L3N6, Canada

4. Department of Mechanical and Materials Engineering, Queen's University , Kingston, ON K7L3N6, Canada ; , Kingston, ON K7L3N6, Canada

5. Centre for Health Innovation, Queen's University , Kingston, ON K7L2V7, Canada ; , Kingston, ON K7L2V7, Canada

6. Department of Surgery, Queen's University , Kingston, ON K7L2V7, Canada ; , Kingston, ON K7L2V7, Canada

Abstract

Abstract Reverse shoulder arthroplasty (RSA) is used to treat patients with cuff tear arthropathy. Loosening remains to be one of the principal modes of implant failure and the main complication leading to revision. Excess micromotion contributes to glenoid loosening. This study sought to determine the predictive accuracy of an experimental system designed to assess factors contributing to RSA glenoid baseplate micromotion. A half-fractional factorial experiment was designed to assess 4 factors: central element type (screw versus peg), central element length (13.5 versus 23.5 mm), anterior-posterior peripheral screw type (locking versus nonlocking) and cancellous bone density (10 versus 25 pounds per cubic foot (pcf)). Four linear variable differential transducers (LVDTs) recorded micromotion from a stainless-steel disk surrounding a modified glenosphere. The displacements were used to interpolate micromotion at each peripheral screw position. The mean absolute percentage error (MAPE) was used to determine the predictive accuracy and error range of the system. The MAPE for each condition ranged from 6.8% to 12.9% for an overall MAPE of (9.5 ± 0.9)%. The system had an error range of 2.7 μm to 20.1 μm, which was lower than those reported by prior studies using optical systems. One of the eight conditions had micromotion that exceeded 150 μm. These findings support the use of displacement transducers, specifically LVDTs, as an accurate system for determining RSA baseplate micromotion in rigid polyurethane foam bone surrogates.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3