Experimental and Computational Investigation for Accelerated Testing and Characterization of Next-Generation Steam Turbine Rotors

Author:

Ayyadevara Narayana Teja1,Subramanian Balaji2,Meda Naga Suresh1

Affiliation:

1. Bharat Heavy Electricals Limited, Corporate R&D , Hyderabad 500093 , India

2. Indian Institute of Technology , Tirupati 517619 , India

Abstract

Abstract A unique set of test protocols is developed to evaluate new materials for high-temperature and pressure applications (>700 °C and 310 bar) in next-generation thermal power plants. These protocols employ accelerated testing processes to provide a realistic estimate of a component’s life under actual field operating conditions. A state-of-the-art experimental facility to characterize turbine rotors for advanced ultra-supercritical conditions was commissioned at Bharat Heavy Electricals Limited, India. An alloy rotor mounted inside the test chamber is subjected to cyclic thermal and mechanical stresses at elevated temperatures for a predetermined number of thermal cycles to estimate its creep and fatigue life. Cyclic thermal and mechanical loads are applied by sequentially exposing rotors rotating at high speed to transient heating, steady-state soaking, and transient cooling. These transient heating and cooling processes are carefully designed to achieve specific temperature gradients inside the rotor bulk. The rotor is heated in a vacuum by thermal radiation from heater coils. In contrast, rotor cooling is accomplished by circulating relatively cold nitrogen gas through the chamber. Preliminary findings from accelerated tests are reported here. Two computational fluid dynamics (CFD) models were developed to support the transient heating and cooling experiments. Good agreement is observed between CFD simulations and measurements, validating the approach presented. This facility, established under a clean energy research initiative, plays a vital role in reducing the time and cost involved in finding suitable alloy materials, thus advancing the development of ultra-efficient thermal power plants.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3