Design of a Command-Shaping Scheme for Mitigating Residual Vibrations in Dielectric Elastomer Actuators

Author:

Sharma Atul Kumar1

Affiliation:

1. Faculty of Mechanical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

Abstract

Abstract Dielectric elastomers (DEs) are a class of highly deformable electroactive polymers (EAPs) employed for electromechanical transduction technology. When electrostatically actuated dielectric elastomer actuators (DEAs) are subjected to an input signal comprising multiple Heaviside voltage steps, the emerging inherent residual vibrations may limit their motion accuracy in practical applications. In this paper, the systematic development of a command-shaping scheme is proposed for controlling residual vibrations in an electrically driven planar DEA. The proposed scheme relies on invoking the force balance at the point of maximum lateral stretch in an oscillation cycle to bring the actuator to a stagnation state followed by the application of an additional electric input signal of predetermined magnitude at a specific time. The underlying concept of the proposed control scheme is articulated for a single Heaviside step input-driven actuator and further extended to the actuator subjected to the multistep input signal. The equation governing the dynamic motion of the actuator is derived using the principle of virtual work. The devised dynamic model of the actuator incorporates the effects of strain stiffening of elastomer and viscous energy dissipation. The nonlinear dynamic governing equation is solved using matlab ode solver for extracting the dynamic response of the actuator. The applicability of the devised command-shaping control scheme is illustrated by taking a wide range of parameters including variations in the extent of equilibrium state sequences, damping, and polymer chain extensibility. The proposed scheme is found to be adaptable in controlling the vibrations of the actuator for any desired equilibrium state. The results presented in this paper can find its potential application in the design of an open-loop control system for DEAs.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference62 articles.

1. High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%;Pelrine;Science,2000

2. Lai, W. , 2015, Characterization, Fabrication, and Analysis of Soft Dielectric Elastomer Actuators Capable of Complex 3D Deformation, Graduate Theses and Dissertations, Iowa State University, p. 14808.

3. Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators;Shintake;Soft Rob.,2018

4. Multisegment Annular Dielectric Elastomer Actuators for Soft Robots;Li;Smart Mater. Struct.,2018

5. Dielectric Elastomer Generators: How Much Energy Can Be Converted?;Koh;IEEE/ASME Trans. Mechatron.,2011

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3