Backward Differentiation Formula and Newmark-Type Index-2 and Index-1 Integration Schemes for Constrained Mechanical Systems

Author:

Meyer T.1,Li P.1,Schweizer B.1

Affiliation:

1. Department of Mechanical Engineering, Institute of Applied Dynamics, Technical University, Darmstadt 64287, Germany

Abstract

Abstract Various methods for solving systems of differential-algebraic equations (DAE systems) are known from literature. Here, an alternative approach is suggested, which is based on a collocated constraints approach (CCA). The basic idea of the method is to introduce intermediate time points. The approach is rather general and may basically be applied for solving arbitrary DAE systems. Here, the approach is discussed for constrained mechanical systems of index-3. Application of the presented formulations for nonmechanical higher index DAE systems is also possible. We discuss index-2 formulations with one intermediate time point and index-1 implementations with two intermediate time points. The presented technique is principally independent of the time discretization method and may be applied in connection with different time integration schemes. Here, implementations are investigated for backward differentiation formula (BDF) and Newmark-type integrator schemes. A direct application of the presented approach yields a system of discretized equations with larger dimensions. The increased dimension of the discretized system of equations may be considered as the main drawback of the presented technique. The main advantage is that the approach may be used in a very straightforward manner for solving rather arbitrary multiphysical DAE systems with arbitrary index. Hence, the method might, for instance, be attractive for general purpose DAE integrators, since the approach is not tailored for special DAE systems (e.g., constrained mechanical systems). Numerical examples will demonstrate the straightforward application of the approach.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference59 articles.

1. Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems;ASME J. Comput. Nonlinear Dyn.,2008

2. Review of Classical Approaches for Constraint Enforcement in Multibody Systems;ASME J. Comput. Nonlinear Dyn.,2008

3. Constraint Stabilization of Mechanical Systems in ODE Form;Proc. IMechE Part K: J. Multibody Dyn.,2011

4. Adding Kinematic Constraints to Purely Differential Dynamics;Comput. Mech.,2011

5. A Discussion of Low Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics;ASME J. Comput. Nonlinear Dyn.,2009

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3